EXPRESS rule writing

Lillehammer
Sunday 6th June 1999

~eurostep-

Agenda

Rule selection

Rule writing

Common problems
Questions and answers

.-eurOStep_ EXPRESS Rule writing

NOTICE

e Usage of examples from current STEP partsisfor
Instructional purposes only, there are no value judgements
associated with these selections. However, where parts
have used invalid EXPRESS these errors have been
reported.

e Thiscourse uses the concepts from the proposed | SO
10303-11TC2, which was produced to resolve ambiguities
In the EXPRESS language. |n many cases the common
problems we discus are due to ambiguitiesin the
EXPRESS |language, not poor modelling.

.-eurOStep_ EXPRESS Rule writing

Acknowledgements

* Thanksto the following for providing example
problems:
— Markus Maier
— Jorulv Rangnes

.-eurOStep_ EXPRESS Rule writing

Reguirements

e |deaisto haveruleswhich are:
— Parsable by computers
— Understandable by humans

e To support both requires aformal language and
consistent style of use.

~eurostep-

Reguirements

 All constraints in an information model should be
poth parsable by computers and understandabl e by
numans. The algorithmic nature of rulesis easly
parsable by computers but without a consistent
style is difficult for human understanding. This
session therefore will attempt to explain the style
of rule writing used within SC4.

~eurostep-

Rule salection

* Which rule do we choose?
— whererule
— uniguerule
— global rule

.-eurOStep_ EXPRESS Rule writing

Whererules

e Used for constraints to be tested for each and
every instance of an entity or defined type.

.-eurOStep_ EXPRESS Rule writing

Uniquerules

« Used for constraints on the whole population of an
entity when constraint is based upon unique values
for attributes of that entity or it’ s supertypes.

.-eurOStep_ EXPRESS Rule writing 9

Global rules

» Used when constraint cannot be specified by the
previous two methods.

.-eurOStep_ EXPRESS Rule writing

10

Example 1

e Constrain the following such that there can only
be one instance of employee with position of
general_managey.

TYPE job_title= ENUMERATION OF (general_manager, manager, worker);
END_TYPE;

ENTITY employes;
name : person_name;
position : job title;

END ENTITY;

~eurostep-

Example 1. Answer

e We cannot use alocal rule since we need accessto
all instances (to check thereisonly one).

« \We cannot use a unique rule on position since this
would also constrain there to be only one manager
and one worker.

* Therefore we must write aglobal rule to check
this constraint.

~eurostep-

Example 2

« Constrain the following such that no two cars can
have the same serial number If they are
manufactured by the same manufacturer.

ENTITY car;
manufactured by : manufacturer;
serial_number : INTEGER,;
END ENTITY;

~eurostep-

Example 2: Answer

 \We cannot use alocal rule since we need access to
al instances.

* We cannot use a unique on serial number since
thiswould constrain all manufacturers to use
unigue seria numbers.

* \We can use unigue on the combination of seria
number and manufacturer.

* We could write aglobal rule, but thisconstraint is
easier stated in a unique clause.
—eurostep-

Example 3

e Constrain the following such that only valid dates
are allowed (ignoring leap years).

ENTITY date;
day : INTEGER,;
month : INTEGER;
END _ENTITY;

~eurostep-

Example 3. Answer

e Since all the attributes required are local, and we
don’t need access to each instance individually
this can be written using a WHERE rule.

~eurostep-

Formulating where rules

simple arithmetic expression

function call

structured aggregate test

Dealing with indeterminate (?) values

~eurostep-

Formulating where rules

e Usesof thewhererule:

e Domain constraint, ensuring valid values for
attributes or combinations of attributes.

e Aggregate element constraints, ensuring all
elements of an aggregate obey a constraint.

« Context constraint, ensuring that the type of an
attribute is constrained within a AP.

~eurostep-

Simple arithmetic expression

e Example 3 could be written as adomain constraint

as follows:

ENTITY date;

day :INTEGER;

month : INTEGER;
WHERE

valid_month: { 1 <=month<=121} ;

valid_day :valid_date(day, month);
END _ENTITY;

e Thisrelieson afunction call to calculate if adate
Isvalid or not with respect to the month.
—eurostep-

Function call

FUNCTION valid_date (day, month : INTEGER) : BOOLEAN;
IF NOT {1 <=month <= 12}
THEN
RETURN FALSE;
ELSE
CASE month OF
4,6,9, 11 : RETURN ({1 <=day <= 30});
2 : RETURN ({1 <=day <= 28});
OTHERWISE : RETURN ({1 <=day <=31});
END CASE;
END_IF;
END_FUNCTION;

~eurostep-

Structured aggregate test

« Based upon the following:
o SIZEOF function;
— Returns the size of any aggregate.

« QUERY expression.

— Returns an aggregate which contains those elements
from the input aggregate which pass a specified test.

~eurostep-

Structured aggregate tests

+ SIZEOF(QUERY (...)) =0

— There shall be none of the e ements for which this test
IS true.

+ SIZEOF(QUERY (...)) >0

— There shall be at least one e ement for which thetest is
true.

. SIZEOF(QUERY (...)) =X
— There shall be x elements for which the test is true.

~eurostep-

Structured aggregate tests:
example

 The EXPRESS answer for example 1 earlier is.
RULE one _genera manager FOR (employee);
WHERE

SIZEOF(QUERY (emp <* employee | emp.position = general_manager)) = 1,
END RULE;

» “employee” isthe set of all employee instances
within the system.

 The QUERY resultsin aset of general managers.
o SIZEOK() =1, meansthereisonly one.

~eurostep-

Structured aggregate: Exercise

e Writearuleto ensure that there are containers
that are loaded with sugar in the population of
snips.

ENTITY ship; ENTITY container;
load : SET OF container; content: cargo;
END_ENTITY; END_ENTITY;

TYPE cargo = ENUMERATION OF (sugar, flour, empty);
END TYPE;

RULE sugar_carriers FOR (ship);

WHERE ?7??

~eurostep-

Structured aggregate: Exercise
answer

RULE sugar_carriers FOR(ship);
WHERE
WR1: SIZEOF(QUERY (a _ship <* ship |
SIZEOF(QUERY (a_container <* a_ship.load |
a_container.content = sugar
)>0
))>0;
END_RULE;

~eurostep-

Dealing with indeterminate (?) 1

 May have optional attributes within an entity or
optional elementsin an array.

* May be dueto attributes not being present as
expected in instances.

 Needto be ableto test if these exist (have avalue)
before using them or provide a default value.

~eurostep-

Dealing with indeterminate (?) 2

 EXPRESS providesthe EXISTS function for this
pUrpose.

« EXPRESS also provides NVL to allow usage of
default values if source is indeterminate.

* Indeterminate in alogical expression is handled as
UNKNOWN

e Thisleadsto the following rule format:
(EXISTS(A) AND ((* testsusing A*)) OR NOT EXISTS(A)

.-eurOStep_ EXPRESS Rule writing 27

Reading complex rules

e Useof alogical approach
e Some examples

~eurostep-

Use of alogical approach

* Most rules can betreated as L ogic predicates

wrl: SIZEOF(QUERY (stylel <* SELF.styles | (NOT (SIZEOF(QUERY (
style2 <* (SELF.styles- stylel) | (NOT ((TYPEOK(stylel) <>
TYPEOF(style?2)) OR (SIZEOF(['EXPLICIT_DRAUGHTING."' +
'SURFACE_STYLE USAGE', 'EXPLICIT_DRAUGHTING." +

'EXTERNALLY_DEFINED _STYLE'] * TYPEOF(stylel)) =1))))) =0)))) =

O;

~eurostep-

Use of alogical approach

wrl: SIZEOF(QUERY (stylel <* SELF.styles | (NOT (SIZEOF(QUERY (
style2 <* (SELF.styles- stylel) | (NOT ((TYPEOK(stylel) <>
TYPEOFR(style?2)) OR (SIZEOF(['EXPLICIT_DRAUGHTING.' +
'SURFACE_STYLE USAGE', 'EXPLICIT_DRAUGHTING." +
'EXTERNALLY _DEFINED STYLE']* TYPEOFK(stylel)) =1))))) =0)))) =
0:

 Intersect the type of stylel with a known set of
type names

~eurostep-

Use of alogical approach

wrl: SIZEOF(QUERY (stylel <* SELF.styles | (NOT (SIZEOF(QUERY (
style2 <* (SELF.styles- stylel) | (NOT ((TYPEOK(stylel) <>
TYPEOFR(style?2)) OR (SIZEOF(['EXPLICIT_DRAUGHTING.' +
'SURFACE_STYLE USAGE', 'EXPLICIT_DRAUGHTING.' +

'EXTERNALLY_DEFINED _STYLE'] * TYPEOF(stylel)) =1))))) =0)))) =

O;

o stylel iseither asurface style usage or an
externally defined style (but not both!)

~eurostep-

Use of alogical approach

wrl: SIZEOF(QUERY (stylel <* SELF.styles | (NOT (SIZEOF(QUERY (
style2 <* (SELF.styles- stylel) | (NOT ((TY PEOF(stylel) <>
TYPEOF(style2)) OR (SIZEOF(['EXPLICIT_DRAUGHTING.' +
'SURFACE_STYLE_USAGE', 'EXPLICIT_DRAUGHTING.' +

'EXTERNALLY_DEFINED_STYLE]* TYPEOF(stylel)) = 1))))) =0)))) =

0

 stylel not the same as style2

~eurostep-

Use of alogical approach

wrl: SIZEOF(QUERY (stylel <* SELF.styles | (NOT (SIZEOF(QUERY (
style2 <* (SELF.styles- stylel) | (NOT ((TY PEOF(stylel) <>
TYPEOF(style2)) OR (SIZEOF(['EXPLICIT _DRAUGHTING.' +
'SURFACE_STYLE_USAGE', 'EXPLICIT_DRAUGHTING.' +
'EXTERNALLY_ DEFINED_STYLE]* TYPEOF(stylel)) = 1))))) =0)))) =
o

o stylel the same as style2 and type of stylel neither
surface style usage nor externally defined style

~eurostep-

Use of alogical approach

wrl: SIZEOF(QUERY (stylel <* SELF.styles | (NOT (SIZEOF(QUERY (
style2 <* (SELF.styles- stylel) | (NOT ((TY PEOF(stylel) <>
TYPEOF(style2)) OR (SIZEOF(['EXPLICIT _DRAUGHTING.' +
'SURFACE_STYLE_USAGE', 'EXPLICIT_DRAUGHTING.' +

'EXTERNALLY_ DEFINED_STYLE]* TYPEOF(stylel)) = 1))))) =0)))) =

0

* There must not exist astylel the same as style?
where the type of stylel is neither
surface style usage nor externally defined style

—eurostep-

Use of alogical approach

wrl: SIZEOF(QUERY (stylel <* SELF.styles | (NOT (SIZEOF(QUERY (
style2 <* (SELF.styles- stylel) | (NOT ((TY PEOF(stylel) <>
TYPEOF(style2)) OR (SIZEOF(['EXPLICIT _DRAUGHTING.' +
'SURFACE_STYLE_USAGE', 'EXPLICIT_DRAUGHTING.' +

'EXTERNALLY_ DEFINED_STYLE]* TYPEOF(stylel)) = 1))))) =0)))) =

0

 There must exist astylel the same as style2 where
the type of stylel is neither surface style usage
nor externally defined_style

—eurostep-

Use of alogical approach

wrl: SIZEOF(QUERY (stylel <* SELF.styles | (NOT (SIZEOF(QUERY (
style2 <* (SELF.styles- stylel) | (NOT ((TY PEOF(stylel) <>
TYPEOF(style2)) OR (SIZEOF(['EXPLICIT _DRAUGHTING.' +
'SURFACE_STYLE_USAGE', 'EXPLICIT_DRAUGHTING.' +
'EXTERNALLY_ DEFINED_STYLE]* TYPEOF(stylel)) = 1))))) =0)))) =
0

» For each style in styles there shall not exist two
styles the same when the type of the styleis
nelther surface style usage nor
externally defined style

—eurostep-

Examples

wrl: SIZEOF(['EXPLICIT _DRAUGHTING.TEXT LITERAL',
'EXPLICIT_DRAUGHTING.ANNOTATION_TEXT,
'EXPLICIT_DRAUGHTING.ANNOTATION_TEXT_CHARACTER),
'EXPLICIT_DRAUGHTING.DEFINED_CHARACTER GLYPH!,
'EXPLICIT_DRAUGHTING.COMPOSITE_TEXT]
* TY PEOF(SELF\styled_item.item)) > O;

wrl: ((NOT closed _curve) AND

(SIZEOF(QUERY (temp <* segments | (temp.transition = discontinuous))) = 1))

OR (closed curve AND (SIZEOF(QUERY (temp <* segments | (temp.transition
= discontinuous))) = 0));

~eurostep-

Writing functions

e Makesureadll variables are initialised before use

e Make sure you deal with the unexpected, i.e.
Indeterminate values being passed as parameters
or attributes of parameters.

.-eurOStep_ EXPRESS Rule writing

38

Common problems

* Thefollowing are examples of problems which
have been detected in SC4 parts.

e Corrections, if supplied, arein

.-eurOStep_ EXPRESS Rule writing

39

String manipulationl

o Often seen rules with typographical problems (line
length) adding STRINGS:

wrl: SIZEOF(QUERY (a<* approva | (NOT
(SIZEOF(USEDIN(a, 'EXPLICIT_DRAUGHTING.' +
'APPROVAL_ASSIGNMENT.' +
'ASSIGNED_APPROVAL')) >=1)))) =0;

 What isbeing created here isthe role name:

EXPLICIT_DRAUGHTING.APPROVAL_ASSIGNMENT.ASSIGNED_APPROVAL

~eurostep-

String manipulation?2

 Hereaddition isincorrect, it should have beena‘;’

as an element separator:
'request_date’ . |IF SIZEOF (e.items) <>
SIZEOF (QUERY (x <* eitems|
SIZEOF (
['CONFIG_CONTROL_DESIGN.CHANGE_REQUEST" +
'CONFIG_CONTROL_DESIGN.START _REQUEST" *
TYPEOF (x)) = 1))
THEN RETURN(FALSE);
END_IF;

~eurostep-

String manipulation?2

 Hereaddition isincorrect, it should have beena‘;’

as an element separator:
'request_date’ . |IF SIZEOF (e.items) <>
SIZEOF (QUERY (x <* eitems|
SIZEOF (
[CONFIG_CONTROL_DESIGN.CHANGE REQUEST"
'CONFIG_CONTROL_DESIGN.START_REQUEST" *
TYPEOF (x)) = 1))
THEN RETURN(FALSE);
END_IF;

~eurostep-

Group referencel

e Trying to access attributes not declared in the
entity referred to by a group reference

ENTITY composite curve on_surface
SUPERTY PE OF(boundary_curve) SUBTY PE OF (composite_curve);
DERIVE
basis surface : SET[0:2] OF surface .= get_basis surface(SELF);
WHERE

END_ENTITY;
n := SIZEOF(c\composite_curve_on_surface.segments);

.-eurOStep_ EXPRESS Rule writing

Group reference?

 Returning a group reference from a function
returns only a part of an instance!

RETURN (f\geometric_representation_item);
RETURN (f); should be used since f will be a geometric_representation_item

"eurUStEp' EXPRESS Rule writing

Bags and Sets

e Bags are not compatible with sets, you cannot
assign abag value to a set variable.

LOCAL
X : SET OF symbol representation_relationship;
END_LOCAL;

X := USEDIN(relation\representation_relationship.rep 1,
'REPRESENTATION_SCHEMA.'+
'REPRESENTATION_RELATIONSHIP.'+ 'REP_2');

X = bag_to set(USEDIN(relation\representation_relationship.rep 1,
'REPRESENTATION_SCHEMA.'+
'REPRESENTATION_RELATIONSHIP.'+ 'REP_2);

.-eurOStep_ EXPRESS Rule writing

Role names

* Rolenames have a specific format as follows:
schena _nane.entity nane.attri bute nanme

ENTITY shape representation_relationship
SUBTY PE OF (representation_relationship);
WHERE

local_srr:=loca_srr +

bag to set(USEDIN(shape representation setfi],
'PRODUCT_PROPERTY REPRESENTATION_SCHEMA.'+
'SHAPE _REPRESENTATION_RELATIONSHIP.REP_1Y);
'PRODUCT_PROPERTY REPRESENTATION_SCHEMA.'+
'REPRESENTATION_RELATIONSHIP.REP 1));

"eurUStEp' EXPRESS Rule writing 46

Partial 1nstantiation 1

 Entity assignment of requires valid complex
Instance

ENTITY direction
SUBTY PE OF (geometric_representation_item);
direction_ratios: LIST [2:3] OF REAL,;
WHERE

v :=direction([0.0,1.0,0.0));

Vv .= representation_item(") || geometric_representation _item() ||
direction([0.0,1.0,0.01);

Thefirst part could be replaced by a constant as done now in 10303-42.

"eurUStEp' EXPRESS Rule writing

47

Partial 1nstantiation 2

e Comparison of an instance with apartial complex

entity value not defined

FUNCTION first_proj_axis
(z_axis, arg: direction): direction;

|F z_axis <> direction([1,0,0]) THEN

|F z_axis\direction <> direction([1,0,0]) THEN
assuming we only wish to test the direction part.

"eurUStEp' EXPRESS Rule writing 48

Assignment to un-initialised
variables 1
* Thefollowing is undefined

LOCAL
result : direction ;
END LOCAL,;

|F (vec.dim <> 2) OR NOT EXISTS (vec) THEN
RETURN(?);

ELSE
result.direction_ratiog[1] := -vec.direction_ratiog[2];

.-eurOStep_ EXPRESS Rule writing

49

Assignment to un-initialised
variables 1
o Itisdefined only if weinitialise the variable

LOCAL
result : direction := representation item(”) ||
geometric_representation_item() ||
direction([0.0,0.0,0.0));
END _LOCAL;

|F (vec.dim <> 2) OR NOT EXISTS (vec) THEN
RETURN(?);

ELSE
result.direction_ratiog[1] := -vec.direction_ratiog[2];

.-eurOStep_ EXPRESS Rule writing

50

Assignment to un-initialised

variables 2
LOCAL
u: LIST [3:3] OF direction;
END LOCAL:

u[3] := NVL(normalise(axis),direction([0,0,1]));
u[1] :=first_proj_axis(u[3],ref direction);
u[2] := normalise(cross_product(u[3],u[1])).orientation;

.-eurOStep_ EXPRESS Rule writing

51

Assignment to un-initialised
variables 2

LOCAL

ul, u2, u3: direction;

u: LIST [3:3] OF direction;
END_ LOCAL;
u3 := NVL(normalise(axis), representation item("”) ||

geometric representation item() || direction([0,0,1]));

ul :=first_proj_axis(u3,ref direction);
u2 = normalise(cross_product(u3,ul)).orientation;
u:=[ul, u2, u3;

"eurUStEp' EXPRESS Rule writing

952

L_ocal variables not needed for

repeat |0ops
 Increment control isimplicitly declared
LOCAL
| - INTEGER,
END LOCAL:

REPEAT i :=1TO ndim;

END_REPEAT;

e Recommendation isto remove the local
declaration of 1.

.-eurOStep_ EXPRESS Rule writing

953

Over to youl!

e Formal part of this session is now finisned

* For the remainder of the time we will work
together to resolve problems you have in your
schemas.

.-eurOStep_ EXPRESS Rule writing

